
Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

1

Fu
rh

at
 R

ob
ot

ic
s

Building applications with the Furhat Robot

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

2

Fu
rh

at
 R

ob
ot

ic
s

Introduction

Robot I/O through the Remote API

The Skill Framework

Kotlin Skill API

Dialog framework

Natural language understanding (NLU)

Multimodal utterances

Wizard-of-Oz

Logging interactions

Graphical programming using Blockly

Summary

3

5

7

7

8

10

10

10

11

12

14

Contents

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

3

Fu
rh

at
 R

ob
ot

ic
s

Introduction
The Furhat Robot is a state-of the art conversational robot and
versatile software platform, which can be used by anyone interested in
exploring social robotic applications, whether the application domain
is teaching language, performing interviews, telling stories to children,
or helping passengers at the airport. The Furhat Robot is currently used
to research human communication and perception, speech technology,
conversational agents, but particularly in research into Human-Robot
Interactions. In this white paper, we will provide an overview of the
different ways in which the Furhat Robot can be programmed and how
applications (or “skills”) can be developed. If you want to read more
about the details, we refer you to our documentation at docs.furhat.io
and our examples on GitHub.

Figure 1 shows an overview of the Furhat Platform. As can be seen, it
includes an SDK with a suite of tools and API's to create interactions
with the Robot. When you develop applications, you can either try them
out on the physical Furhat Robot, or with a Virtual Robot that comes
with the SDK.

Figure 1: Overview of the Furhat Platform.

Since the potential use cases of the Furhat Robot are so many, we
believe that the best way to accommodate developers is to provide
different ways of programming the robot. Currently, we provide three
ways of doing this, as illustrated in Figure 2:

https://docs.furhat.io/
https://github.com/FurhatRobotics/example-skills

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

4

Fu
rh

at
 R

ob
ot

ic
s

• The Remote API, by which you can access the core Robot I/O
functionality, using any programming language.

• The Kotlin Skill API, by which you have access to the Skill Framework
and all functionality of the platform, in order to build rich interactions.

• Blockly, which is a graphical programming tool with which you can
also access the Skill Framework, albeit limited to simpler interaction.

In the next sections, we will describe these three approaches in more
detail.

Figure 2: The three different ways of programming the Furhat Robot.

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

5

Fu
rh

at
 R

ob
ot

ic
s

Robot I/O through the Remote API
The Remote API is intended for users of the Furhat Robot that are only
interested in the core input/output functionality of the robot, such as
speech synthesis, face tracking and speech recognition, and want to
access these functionalities from the programming language of their
choice. For example, let’s say you already have a dialogue framework
written in Python, and you want to connect it to Furhat, so that you can
track users in front of Furhat, recognize speech, and perform speech
synthesis with synchronized lip movements. In that case, the best
approach is likely to use the Remote API. As the name suggests, this
will assume that your code runs on a separate machine connected
over a network to Furhat, and that your program sends remote
instructions to the robot. During development, you can also connect it
to the virtual Furhat running on your computer.

Remote API is polyglot, including support for over 50 different
programming languages. The Remote API implemented it as a REST
API over HTTP, using the tool Swagger to generate the different client
libraries. This means that you can generate an API for your language of
choice, be it C#, Python, Scala or Bash.

Since Python is such a popular programming language (especially
in the research community), we have made it even easier to use the
Remote API from Python, by putting an already compiled client library
on PyPI (called “furhat-remote-api”). The following examples show
how easily the library can be used from Python, after it has been
installed:

from furhat_remote_api import FurhatRemoteAPI

Create an instance of the FurhatRemoteAPI class, providing the address of the

robot or the SDK running the virtual robot

furhat = FurhatRemoteAPI("localhost")

Set the voice of the robot

furhat.set_voice(name='Matthew')

Say "Hi there!"

furhat.say(text="Hi there!")

Listen to user speech and return ASR result

result = furhat.listen()

https://pypi.org/project/furhat-remote-api/

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

6

Fu
rh

at
 R

ob
ot

ic
s

The core I/O functionality that the Remote API supports includes:

• Speech synthesis: We use the Amazon Polly TTS and Acapela TTS,
with support for 210 voices and 43 languages. You can send a text to
synthesize to Furhat, and synchronized lip movements will be added
automatically. By using SSML tags, you can modify speaking rate,
stress, etc. You can also send a pointer to an audio file to play. If it
contains speech, lip movements will also be added.

• Speech recognition: Furhat can listen to speech and return a text
with the recognized speech using its built-in microphone. We use
cloud-based services from Google Speech and Microsoft Azure, with
support for 40+ languages.

• Facial gestures: Furhat has a library of 20 pre-defined gestures (such
as “smile” and “brow raise”) that you can activate. If you want, you can
also define your own gestures using a set of 52 low level parameters.

• Gaze: You can control where Furhat should be looking by providing
coordinates in space. The neck and eyes will automatically move in a
natural way.

• Face tracking: The users in front of Furhat are tracked with the built-in
camera. You can get access to the location of these users, as well as
their head pose and facial expressions.

• LED ring: You can control the color of the LED ring under Furhat.

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

7

Fu
rh

at
 R

ob
ot

ic
s

The Skill Framework
While the basic I/O functionality might be suitable if you already
have some kind of external dialogue framework or if you only want to
control the robot for a specific experiment, it does not have any built-in
support for building complete social robotic applications, what we
refer to as “Skills”. To support this, we provide the Skill Framework
and the Skill API. As illustrated in Figure 2, the Skill Framework builds
on top of the basic I/O functionality described above and offers more
complex functionality and behaviors. This includes Natural Language
Understanding (NLU), Dialog management, Multimodal utterances
(mixing synchronized speech, gestures and other behaviors),
support for Wizard-of-Oz (i.e., semi-autonomous control), Logging
interactions, and Graphical User Interfaces (GUI) (to complement the
conversational interaction). You access the Skill framework through
the powerful Kotlin Skill API or using the more simplistic graphical
programming interface called Blockly.

Kotlin Skill API

You access the Skill Framework through the Skill API, which is
implemented in the Kotlin programming language. Kotlin is a modern
language, using the Java Runtime Environment, which means that
you can use all existing Java libraries directly from Kotlin. One of the
strengths of Kotlin is that it is statically typed, which means that you
will get very good code completion when developing in an IDE, to
explore all the different methods provided, get documentation, and
verify that you use the API correctly. We recommend using the IntelliJ
IDE when developing your skill, which has native support for Kotlin.
You can run and debug your skill directly from the IDE, either towards
a Furhat Robot, or Virtual Furhat running on your computer. When you
want to deploy your skill, you can package it as a single skill-file and
upload it to your robot, as well as distributing it to others if you want.
This way, the robot can run your skill completely stand-alone without
any additional computer connected.

Note that you can also use the Skill API even if you are only interested
in the basic Robot I/O functionality. For example, if you have built
an application in Google DialogFlow and want to integrate it with
the Furhat Robot, it is very easy to connect your skill to a Google
DialogFlow agent, and make the Furhat Robot ask questions and read
out the responses.

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

8

Fu
rh

at
 R

ob
ot

ic
s

Dialog framework

Central to the Skill Framework is the Flow, which is a programming
framework for managing the interaction. Basically, you can say that
the Flow defines how the robot should react to various events (such as
sensory input), depending on which state it is in. In dialog systems, this
is often referred to as dialog management, but since a human-robot
interaction is multimodal, it does not only handle the verbal input/
output, but also users entering and leaving, people shifting attention
and making facial gestures, etc.

The Flow is based on the concept of hierarchical state machines. The
idea is that the interaction transitions through states, and in each state
you can define how the robot should react to events, through triggers.
There is a large set of built-in triggers for various types of events, such
as the user saying something, a user entering or leaving the interaction,
the user shifting attention, or if a certain timeout has passed. Through
Kotlin’s support for extension functions, you can also define your own
triggers, and your own complex behaviors.

The states are defined in a hierarchical fashion, which means that you
can define general behaviors (such as what should happen if a new
user enters the interaction) in a parent state, and then more specific
behaviors in the leaf states.

One of the strengths with Kotlin is its support for DSL:s (Domain
Specific Languages), which allows you to write well structured code in
a declarative way. The Flow is an example of this, and it allows you to
easily define Furhat’s behavior on a high level of abstraction. Here is a
very simple example of how two states within a Flow can be defined:

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

9

Fu
rh

at
 R

ob
ot

ic
s

val OrderFruitState = state {

 onEntry {

 furhat.ask("Would you like to buy some fruits?")

 }

 onResponse<BuyFruit> {

 // Access the fruits from the intent

 val fruits = it.intent.fruits

 // Store the ordered fruits with the user

 users.current.fruits += fruits

 // Confirm the order

 furhat.say {

 +"Okay, ${fruits.text}"

 +Gestures.Smile

 +"what a lovely choice!"

 }

 }

 onResponse<No> {

 furhat.say("Ok, maybe some other time then!")

 goto(EndState)

 }

 onResponse {

 furhat.say("Sorry, I didn’t understand")

 reentry()

 }

 onNoResponse {

 reentry()

 }

}

val EndState = state {

 onEntry {

 furhat.say("Goodbye!")

 furhat.attendNobody()

 }

}

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

10

Fu
rh

at
 R

ob
ot

ic
s

Natural language understanding (NLU)

As the example above shows, the special onResponse trigger
is also integrated with the NLU engine. For example, the trigger
onResponse<No> will be triggered if the user says something that
can be interpreted as the “intent” No, such as “nope” or “don’t think
so”, regardless of which of the supported languages was used. The
developer can use any of the built-in intents, or define new ones that
are specific to the domain. In the example above, the BuyFruit intent
would be an example of that. The intents also have “entities” in them,
which would be the fruit that is being ordered in this example. The
platform also comes with a set of built-in entities, such as time and
date expressions. If you have used other modern NLU frameworks,
such as DialogFlow, LUIS or RASA, you will find the basic principles to
be familiar. However, here the NLU is tightly integrated with the flow.
This means that the potential intents that can be recognized depend
on which state the dialog is currently in, and will be automatically
classified. Since the intents and entities are defined programmatically
in Kotlin, you can also create integrations with your own database or
other backends for creating these dynamically.

Multimodal utterances

In many cases, you want to add facial expressions and other behaviour
with the Robot’s speech. In the example above, a smile was inserted
in the middle of the Robot’s response after the user triggered the
intent BuyFruit. You can mix in any behaviors, including gaze shifts, or
arbitrary code to be executed to form multimodal utterances.

Wizard-of-Oz

When developing human-robot interactions, or dialog systems in
general, it is often hard to foresee all the things users might want to
say to the robot, or how they will behave in unexpected situations.
A common approach is to use a so-called Wizard-of-Oz setup,
where a hidden person (the “Wizard”) controls the robot initially.
The interactions can then be logged and analysed, to guide the
development of the system.

Another situation where Wizard-of-Oz is useful is if you are a
human-robot interaction researcher and you want to do controlled
experiments on how the robot’s behaviour affects the user. Let’s say
you want to investigate whether a robot that smiles more often also
makes the user smile more often. You might want to set up a simple
interaction where this can be tested, such as a robot interviewer which

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

11

Fu
rh

at
 R

ob
ot

ic
s

Figure 3: The dashboard with the Wizard buttons.

asks the user a couple of questions. This can then be done without
building a fully autonomous system.

The Skill Framework has very powerful built-in support for Wizard-of-
Oz. You can simply add onButton triggers in your flow with associated
robot behaviors. These buttons will then appear in the dashboard of
the web console where you can monitor and manage the Furhat Robot,
as shown in Figure 3. This means that you can have different buttons
appearing, depending on the current state of the dialog. And you can
mix autonomous behavior with controlled behavior. As you can see in
the figure, the buttons can also be organized with colors and grouped.
The camera feed from the robot is shown to the left. If you click in the
camera view, you can make Furhat attend a specific location or a user
(and then automatically follow that user as she moves around).

Logging interactions

Regardless of whether you are doing HRI experiments, developing
your skill using Wizard-of-Oz, or wanting to fine-tune your skill, it is
very useful to be able to log the interactions. The SDK offers a Log
Viewer tool, where you can see logs from your interactions, as shown
in Figure 4. There you can see detailed timestamps of events, read

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

12

Fu
rh

at
 R

ob
ot

ic
s

the transcriptions of what has been said, and also listen to the user’s
speech. Note that your interactions are not automatically logged, but it
is very easy to start and stop logging from anywhere within your skill.

Figure 4: The Log Viewer tool

Graphical programming using Blockly

While the Skill Framework is very powerful, it naturally requires a
certain level of coding experience from the developer, and some time
to learn the Skill API. We therefore also offer a graphical programming
environment called Blockly. Using this, you can build simple interaction
flows, with states and triggers, according to the principles outlined
above. However, instead of writing code, you drag and connect
blocks from a toolbox onto a canvas, as shown in Figure 5. You can
immediately run your flow (on either the physical or the virtual robot)
and watch how it is being executed, without any need to first compile
anything.

Using Blockly is a very good (and fun!) way to familiarize yourself with
the basic principles of skill development and the functionality of the
Furhat Robot. It is also very good if you want to build simple Wizard-
of-Oz interactions (as shown in Figure 5), if you want to prototype a
skill, or to make stage performances. It can also be used in education.

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

13

Fu
rh

at
 R

ob
ot

ic
s

However, it should be noted that there is a limit as to how complex
interactions you can build with this tool, and you will not be able
to integrate your interactions with external components, such as
databases or cloud services.

Figure 5: Blockly programming vs. programming the flow in Kotlin.

Bu
ild

in
g

ap
pl

ic
at

io
ns

 w
ith

 th
e

Fu
rh

at
 R

ob
ot

14

Fu
rh

at
 R

ob
ot

ic
s

Summary
The Furhat Robot is a state-of-the art social and conversational robot
and includes a versatile platform to create natural interactions, and the
potential applications of the Furhat Robot are many. Users of the robot
have very different backgrounds, therefore, we offer three different
ways of programming the Furhat Robot, to accommodate these
different needs. The strengths and limitations of these approaches are
summarized in the table below:

Strengths Limitations

Remote API • Support for 50+ programming
languages.

• Easy to get started and
integrate with existing software.

• Limited to basic robot I/O.

• Requires another dialog
system running on a
separate system.

Skill Framework
& Skill API

• Support for all functionality in
the Furhat platform, including
tools such as dialog flow, NLU,
Wizard-of-Oz and Logging.

• Can be used to build complete
interactions (Skills).

• Skills can be packaged and run
on the robot.

• You have to learn Kotlin.

• If other components or
frameworks you want to
use are not Kotlin or Java-
based, it will require a more
advanced integration.

Blockly • Very easy to get started and
learn.

• Quick iterations while
developing and running (no
need to compile).

• Can only be used for
simpler applications.

hello@furhatrobotics.com

Th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t a
re

 s
ub

je
ct

 to
 c

on
tin

uo
us

 im
pr

ov
em

en
t a

nd
 re

vi
si

on
, i

n
lin

e
w

ith
 th

e
ev

ol
ut

io
n

of
 F

ur
ha

t p
ro

du
ct

s
Co

py
rig

ht
 F

ur
ha

t R
ob

ot
ic

s
AB

 ©
 2

02
1

- C
om

m
er

ci
al

 In
 C

on
fid

en
ce

FurhatRobotics

@furhatrobotics

Furhat Robotics

Contact

More info

Follow

•

•

•
•

•
•

www.furhatrobotics.com

mailto:hello%40furhatrobotics.com?subject=
https://www.facebook.com/FurhatRobotics
https://www.youtube.com/c/furhatrobotics
https://www.instagram.com/furhatrobotics/
https://twitter.com/furhatrobotics
https://www.linkedin.com/company/furhat-robotics/
https://medium.com/@furhatrobotics
https://furhatrobotics.com

