
Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

1

Fu
rh

at
 R

ob
ot

ic
s

Furhat Conversational Platform

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

2

Fu
rh

at
 R

ob
ot

ic
s

FurhatOS: A Groundbreaking
Conversational System

Sensor fusion and situation modeling

Output processing and behavior
decomposition

Modeling conversational context

Natural language understanding

Summary

Glossary

3

6

8

10

14

15

16

Contents

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

3

Fu
rh

at
 R

ob
ot

ic
s

FurhatOS: A Groundbreaking
Conversational System

This white paper aims to provide a basic technical overview of
FurhatOS for the novice reader. It offers insight into how FurhatOS
differs from traditional conversational systems, how the OS enables
a broad range of face-to-face human-robot interactions, how these
interactions are handled in real time and why this is essential. The
paper also describes the different types of sensors, modules and
actions which make this all possible.

To understand the principles behind FurhatOS, it is important to
highlight the differences between typical spoken interactions with for
example voice assistants, and the social face-to-face interaction that
FurhatOS is designed for.

Traditionally, conversational systems have been designed to handle
the exchange of speech in task-oriented dialog, such as ticket booking
or weather information queries. In such voice-only applications, the
physical space where the interaction takes place is typically neglected,
and the visual channel is not used at all. Think Alexa or Siri - it doesn’t
matter where exactly the user is standing, what direction the user is
facing, or whether the user is smiling or frowning; the system is audio
only. Moreover, the system is assumed to interact with a single user.
The system does not recognize the difference between one user
speaking or several.

In contrast, FurhatOS is a conversational platform for face-to-
face human-robot interaction. Suddenly, a much broader range of
interaction scenarios is possible. With FurhatOS, several users may
interact with the robot in one interaction. The visual channel (such as
facial expressions) and the physical situation are taken into account,
and many different types of interactions can be modelled.
FurhatOS is a modular and expandable system, consisting of a large
set of predefined modules that handle visual input, speech input,
situation modeling, behavior control, etc. This gives a very powerful
platform for modeling social interaction.

The combination of all these techniques is no trivial matter. Face-
to-face interaction involves a large number of real-time events that
need to be orchestrated to handle phenomena such as overlaps,
interruptions, coordination of head pose and gaze in turn-taking, etc.
Therefore, FurhatOS has been designed to allow the developer to
author the dialog flow in a way that is simple to understand for the
novice, yet powerful enough to model more sophisticated behaviors.

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

4

Fu
rh

at
 R

ob
ot

ic
s

Another key difference between traditional conversational systems
and FurhatOS is that the traditional systems typically model the
interaction on a turn-by-turn basis, essentially mapping questions
from the user to responses from the system. The interaction feels
flat or linear, even one-dimensional. In contrast, social human-robot
interaction must be modelled in real time , since many things happen
simultaneously and continuously in different communication channels
(such as speech, gestures and gaze).

A very simple example is illustrated in Figure 1. A user approaches the
robot; the robot looks up at the user and says, "H ello there" . The user
replies ”H i,” but then leaves the interaction, after which the robot looks
down again.

To model this interaction, FurhatOS distributes several different events
that represent the sensations and actions that take place. For example,
the vision component generates a sense.user.enter event when
the user enters the interaction, which in turn should cause the robot
to follow the user with the gaze (as issued with the action.gaze
event). This also causes the robot to start greeting the user (the
action.speech event triggers the text-to-speech, TTS, component
to start speaking). When speech from the user is detected (s ense.
speech.start), this triggers the robot to smile (a ction.gesture).
As this simple example illustrates, there is a continuous flow of events
representing things that the robot perceives and actions that are
being executed. In this white paper, we will describe how the different
modules in FurhatOS generate and trigger these events, resulting in
a complex behavior which is transforming - the way humans interact
with robots.

Figure 1: Different events occurring in different modules of the system, illustrated on a timeline.

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

5

Fu
rh

at
 R

ob
ot

ic
s

Essentially, FurhatOS consists of a number of different modules, where
each module may react to, and produce, new events. There are three
basic types of events: action, sense and monitor.

Action represents things that the system should do, such as saying
something, producing a gesture, or turning the head. Sense represents
things that the system perceives (such as a user saying something
or approaching Furhat). Monitor represents feedback sensations
that modules are required to produce when performing an action.
Such events are essential to real-time systems, since they allow other
modules to know when actions have been performed or are about
to be performed, which facilitates synchronization, sequencing, and
interruptions of actions (for example if the utterance the system
produces needs to be interrupted because the user is leaving the
interaction in the middle of it).

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

6

Fu
rh

at
 R

ob
ot

ic
s

Sensor fusion and situation modeling
An important sensor stream for face-to-face interaction is using the
robot’s camera to track the location and rotation of the users' heads,
as well as their facial expressions. Another important sensor stream
is the speech from the users, as picked up by the robot’s microphone.
FurhatOS supports the use of an array microphone (with beam forming
and echo cancellation), or close-talking microphones, depending on
the setting. FurhatOS also has several modules that integrate with
cloud-based automatic speech recognizers (ASR) from providers such
as Google and Microsoft.

To integrate the low-level events from these sensors, a situation model
is being constructed. Figure 2 illustrates how this is being done in a
game, where the users and the robot discuss the sorting of a set of
cards on a table. These could potentially be physical cards detected
with cameras, but in this example, we have used a touch table to
display the cards and detect their location. The situation model (shown
from the top in the figure) takes low-level events from the different
sensors (camera, touch table, and microphones); creates a 3D
representation of the situation; and then generates high-level events
for the combined sensory data.

Also, if there are several sensors tracking the same users and objects,
the situation model can merge these streams into one coherent model,
and map sensory events to a common set of user IDs. That means
speech recognition results from the microphones can be mapped to
the right users based on their location, regardless of whether it is a
microphone array or a close-up microphone. The system knows which
user is talking when.

Another task of the situation model is to keep track of when users
enter and leave the interaction space of the robot, which will trigger the
robot to start and end the interaction. Finally, when (card game skill)
cards are being introduced or moved on the table, the situation model
translates the 3D coordinates, and computes which items are being
moved the most (which means that they should be in focus).

Each user object in the situation model contains a record with
variables that store information about the user. Thus, it is easy to store
and retrieve personal long-term information (such as a user’s name),
but also more temporary information, such as the itinerary during the
booking of a trip. Furhat Robotics is currently working on integrating
face recognition into the framework, which will make it possible to
seamlessly retrieve long-term information about the user as soon as
he/she appears in the situation model.

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

7

Fu
rh

at
 R

ob
ot

ic
s

Figure 2: Overview of the different components and some of the events flowing in an example application.

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

8

Fu
rh

at
 R

ob
ot

ic
s

Output processing and behavior
decomposition

As can be seen in Figure 2, the higher-level sensory data is sent from
the Situation Model to the Dialog Flow and The Attention Flow. Both
these modules act as controllers in the system; that is, they take
sensory events and map them to action events.

The task of the Dialog Flow is to manage the turn-taking and to
generate responses from Furhat. The Flow mechanism will be
described in more detail in the next section, but is basically a
collection of states, where each state represents the current context.
As will be explained, the states are defined in a hierarchical manner,
which drastically reduces the number of states needed. This means
complicated interactions can still be handled in a relatively simple
manner. For example, the relatively complex card sorting game
described above only has around 30 different dialog states.

The task of the Attention Flow is to tell Furhat which specific target
to pay attention to at any moment. The Attention Flow receives
continuous events about users and items moving from the Situation
model, and sends continuous action.gaze events so that Furhat's
attention to a certain target is maintained.

The Attention Flow can be in several different states (as instructed by
the Dialog Flow): Idle (looking down, waiting for someone to interact),
AttendingItem (looking at one of the cards), AttendingUser (looking
at one of the users), or AttendingAll (shifting the gaze between the
users).

The 3D position of the target is transformed into both neck and gaze
movements of Furhat (taking Furhat’s position in the Situation model
into account). If a shift in gaze is small, only the eyes move; otherwise
the eyes move first, after which the neck movement follows, but this
can be configured.

FurhatOS supports several different speech synthesizers from major
third-parties such as Acapela, CereProc and Amazon. The synthesized
speech is then synchronized with the lip movements in the facial
animation, using a lip animation model developed by Furhat Robotics.
The face also supports a number of different facial expressions, which
we call gestures, that can easily be extended by the developer.

Complex actions that the developer has control over, such as Say,
Listen and Attend, are referred to as behaviors. When issuing such
a behavior, several different parameters can be set to control, for

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

9

Fu
rh

at
 R

ob
ot

ic
s

example, how the attention should be shifted, and for how long the
system should listen before giving up (if the user doesn't say anything).
Furhat Robotics is building a library of more high-level behaviors that
can make application development even more efficient.

An example of such a high-level behavior is shown in Figure 3. In
this example, the behavior Greet relies on the behavior AskEach, etc.
The behavior decomposition will then break this down to lower-level
behaviors, attending all users one at a time, making sure they attend
to the robot, ask them the question, listen for the answer, store the
answers in the right user slots, ask necessary confirmation questions,
etc.

Another benefit of such a library of reusable high-level behaviors is
that this can reduce the need for a dialog designer with thorough
knowledge to accomplish successful human-robot interaction - this
detailed knowledge can instead be easily encoded through these
high-level behaviors. It will also make it possible for developers to
define their own generic behaviors and then share them with other
developers. It’s a system which is simple and scalable yet powerful,
which can quickly lead to a whole new world of high-level behaviors
and complex human-robot interactions.

Figure 3: Example behavior decomposition

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

10

Fu
rh

at
 R

ob
ot

ic
s

Modeling conversational context
A central problem of dialog management is that of selecting the next
system action - in other words, mapping sensations to actions.

The most straightforward approach is a direct mapping of the last
user utterance to a system response, which may work for very simple
question-answering systems. However, since dialog is inherently
context-dependent, the selection of action often needs to depend on
the current dialog state.

A common model which takes the dialog state into account is finite
state machines (FSM). FSMs are attractive in that they can be easily
visualized and the flow is easy to understand. However, this only
holds for simple models. FSM do not model mixed-initiative dialogs
very well. In such dialogues, the user is not only expected to answer
questions from the system, but can also ask other questions or shift
topic at any point.

For example, if the user should be able to ask "What is your name?"
at any point in the dialogue, a transition for this must be added to
all states. If many such questions should be possible to handle, the
number of states and transitions can easily explode.

Another model for representing the dialogue state is the so-called
information state approach, where a record of variables is used to
represent the context, such as the last user utterance, a stack of
issues under discussion, etc. A set of rules are then applied that are
conditioned on these variables and may cause other variables to
change (causing other rules to apply), or result in actions that the
system can take (similar to the concept of a production system in AI).
This approach may scale better to more complex interaction patterns
and domains than FSM, since the number of possible states the
system can be in (in effect, all possible combinations of the variables)
doesn’t have to be itemized (unlike for FSMs). However, since these
states are not explicitly defined, it may be hard to anticipate and get
an overview of the system’s behavior, as the number of variables and
update rules grows. This also means that the state-space cannot be
easily visualized, as is the case with (smaller) FSMs.

A powerful formalism for defining complex, reactive, event-driven
systems - which is used in FurhatOS - is called statecharts (sometimes
referred to as Harel Statecharts after its inventor David Harel). When
applied to dialog control, this paradigm can be regarded as a middle
ground between the two approaches outlined above. Just like
FSM, the dialog state is represented as a set of predefined states
with transitions that are triggered by events. However, Harel added

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

11

Fu
rh

at
 R

ob
ot

ic
s

a number of extensions that drastically reduce the number of states and
transitions needed.

First, the states can be hierarchically structured; allowing the designer to define
generic event handlers on one level, and more specific event handlers in the
sub-states. Second, it is possible to add a datamodel (a set of global variables,
much like the information state), which may affect further execution. Third, it is
possible to add guard conditions to transitions, which are dependent on event
parameters and the state of the datamodel. Fourth, transitions between states,
or the entering or leaving of a state, can also be associated with actions, which
can be used to raise internal or external events that either affect the further
execution of the statechart, or give rise to actions in the other parts of the
system (such as requesting the speech synthesizer to say something).

To simplify the authoring of the dialog behavior, Furhat Robotics has developed
a DSL (Domain Specific Language) for authoring the dialog flow, this DSK can be
regarded as a variant of Harel Statecharts.

To the basic statechart model, Furhat Robotics has added several new
extensions. The most important extension is the possibility of recursion (or
context-freeness). In addition to the regular goto transition, it is also possible to
call another state. While goto corresponds to a traditional statechart transition,
call makes the execution model put the current state and execution plan on a
call stack before the transition takes place. The called state can then return to
the calling state and execution plan without any explicit reference to a return
point. The called state can also take parameters that affect the execution. This
mechanism is used to define the behaviors outlined above.

For example, a set of states (i.e., a flow) can be defined that implements the Ask
behavior. This flow is then called from the application flow whenever the robot
asks the user something, and returns to the application when the behavior has
been completed.

When designing a conversational application with FurhatOS, it is useful to first
define a state hierarchy, where more specific states inherit more generic states.

A simple example of such a hierarchy is shown in Figure 4. In the example, we
imagine a robot operating to take hamburger orders. On the top, we find more
generic states. When no customer is engaging with the robot, it is in an Idle
state. When a customer appears, it goes to the Order state. This state has in
turn a number of sub-states for Greeting the customer, requesting the main
order, what to drink, what to have on the side, and finally the closing.

There may also be even more specific states, such as talking about the flavor of
the drink. In the more abstract states, more generic event handlers (that are the
same for several states) may be placed, such as what to do if the user suddenly
leaves the interaction, or what to say if the robot does not understand the user.

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

12

Fu
rh

at
 R

ob
ot

ic
s

All events that are received are first checked against the most specific
state the system is currently in (the lowest one in the hierarchy), and
then against the more generic states (higher up) in the hierarchy.
Thus, more specific states can override the event handlers in the more
generic states.

Figure 4: Modeling the hierarchical states

Figure 5 shows what this dialogue may look like. When the user walks
up to the robot, it starts by asking what the user wants. When the user
says that he wants a cheese burger, the system sees that it doesn't
know what the user wants to drink, so it asks this (by going to the
RequestDrink state). The user now over-answers this: he provides both
the drink ("a milkshake") and the side order ("some fries"). However,
this is fine, still the more generic state Order takes care of registering
the side order. The system also detects that it does not know the
flavour of the milkshake, so it goes to the RequestFlavor state. The
user now asks, "what options are there?", which is interpreted in context
of the RequestFlavor state (if it would have been in for example the
RequestSide state, the answer would have been different). After
hearing the options, the user changes his mind and instead orders a
coke, which is handled by the higher-level RequestDrink state. When
the system then asks for the size of the fries, the system can interpret
that fragmentary answer "large" in the current context (RequestSide).

What this example shows is how language is inherently context-
dependent, and that users do not always give exact answers to the
question that was asked. The hierarchical context model in FurhatOS
is designed to handle these things, creating a smooth, seamless user
experience. The human-robot interaction is much closer to how a
human-human interaction would look.

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

13

Fu
rh

at
 R

ob
ot

ic
s

Figure 5: Example dialog with hierarchical states.

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

14

Fu
rh

at
 R

ob
ot

ic
s

Natural language understanding
To process the meaning of what the user says, most systems today,
including FurhatOS, are based on the notion of intents & entities,
as illustrated in Figure 6. Intents represent the overall meaning of
the utterance, such as Greeting or OrderPizza, whereas Entities
are important concepts found in the text, such as Time ("3 pm") or
Topping ("pepper" and "ham"). Entities can typically be user-defined
for a specific application, but FurhatOS also provide a set of pre-built
entities for generic things like Date, Time, PersonName, Number,
etc. The overall intent is identified using machine learning, where
the developer provides examples of the different Intents, eventually
complemented with things that users say when interacting with the
system.

Figure 6: Example of intent and entity detection.

Compared to other platforms, Furhat OS adds a number of novel
advanced features that allow implementation of more natural & flexible
conversations:

• Entities can be programmatically defined using a number of different
tools & algorithms, including grammars, dictionaries, knowledge
graphs and wildcards.

• Whereas most systems separate natural language understanding from
dialog management & treat them as two separate steps), we tie it to
the state hierarchy in dialog management (see Section 4). In this way,
it becomes possible for the dialog author to define potential intents
(things the user might say) on various levels in the state hierarchy.
For example, more generic things (like "What did you say?") can be
defined at the top & be active all the time, whereas more specific,
context-dependent things (like "No, red") can be defined further down.
At any point in the dialog, the current state hierarchy is examined
& all potential intent triggers on different levels of the hierarchy are
automatically collected & compiled into a context-sensitive intent
classifier on-the-fly, without the developer having to think about it.

• Our natural language understanding module can handle utterances
with multiple intents, as shown in Figure 6. This multiple-intent
classification is automatically constructed from the different triggers
for these different intents.

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

15

Fu
rh

at
 R

ob
ot

ic
s

Summary
FurhatOS is a conversational platform for face-to-face human-robot
interaction. Compared to conversational systems for simpler voice-
only interactions - targeted towards chatbots, smartphones and smart
speakers - FurhatOS has several unique properties:

• Instead of modelling the interaction on a turn-by-turn bases, FurhatOS
models the interaction in real time, using various multi-modal events,
allowing Furhat to do things like gazing and smiling at a newly arrived
user in the middle of a sentence, and nodding while the user is
speaking.

• Sensory input from cameras and microphones are combined into
one situation model that can be used to understand where users are
located, who is engaged in the interaction, who is speaking, and where
their attention is directed.

• Simpler behaviors (involving both speech, gaze, and gestures) can be
combined into more complex behaviors that can be reused across
applications.

• The context of the interaction is modelled using hierarchical states,
which allows Furhat to engage in mixed-initiative interactions and
react to events with both generic and specific behaviors. This allows
Furhat to engage in many different types of interactions where the
dialog context is of importance, not just simple question-answering.

• The natural language understanding (NLU) is tightly coupled with the
hierarchical states machine, allowing it to be highly context-dependent.

Fu
rh

at
 C

on
ve

rs
at

io
na

l P
la

tf
or

m

16

Fu
rh

at
 R

ob
ot

ic
s

Glossary

API

ASR

GUI

I/O

FSM

NLP

NLU

OS

SDK

TTS

Application Programming Interface

Automatic Speech Recognition

Graphical User Interface

Input Output

Finite State Machine

Natural Language Processing

Natural Language Understanding

Operating System

Software Development Kit

Text To Speech

hello@furhatrobotics.com

Th
e

co
nt

en
ts

 o
f t

hi
s

do
cu

m
en

t a
re

 s
ub

je
ct

 to
 c

on
tin

uo
us

 im
pr

ov
em

en
t a

nd
 re

vi
si

on
, i

n
lin

e
w

ith
 th

e
ev

ol
ut

io
n

of
 F

ur
ha

t p
ro

du
ct

s
Co

py
rig

ht
 F

ur
ha

t R
ob

ot
ic

s
AB

 ©
 2

02
1

- C
om

m
er

ci
al

 In
 C

on
fid

en
ce

FurhatRobotics

@furhatrobotics

Furhat Robotics

Contact

More info

Follow

•

•

•
•

•
•

www.furhatrobotics.com

mailto:hello%40furhatrobotics.com?subject=
https://www.facebook.com/FurhatRobotics
https://www.youtube.com/c/furhatrobotics
https://www.instagram.com/furhatrobotics/
https://twitter.com/furhatrobotics
https://www.linkedin.com/company/furhat-robotics/
https://medium.com/@furhatrobotics
https://furhatrobotics.com

